Применение современной схемотехники с использованием простых оригинальных решений на традиционной элементной базе и на новых малогабаритных микросхемах позволяет изготовить компактные и удобные в эксплуатации регуляторы большой мощности. В данной статье описано несколько простых конструкций регуляторов мощности нагрузки до 5 кВт, которые легко изготовить из доступных деталей.

 


Электронные регуляторы мощности нагрузки в настоящее время широко используются в промышленности и быту для плавного регулирования скорости вращения электродвигателей, температуры нагревательных приборов, интенсивности освещения помещений электрическими лампами, установки необходимого сварочного тока, регулировки зарядного тока аккумуляторных батарей и т.п. Раньше для этого использовались громоздкие трансформаторы и автотрансформаторы со ступенчатым или плавным переключением витков их обмоток, работающих на нагрузку. Электронные регуляторы более компактны, удобны в эксплуатации и имеют малый вес при значительно большей мощности. В основном, исполнительными элементами электронных регуляторов мощности переменного тока являются: тиристор, симистор и оптотиристор, управление последним осуществляется через встроенную в него оптопару, устраняющую гальваническую связь между схемой управления и питающей электросетью.

Регулирование мощности этими элементами основано на изменении фазы включения симистора в каждой полуволне синусоидального напряжения схемой управления. В результате этого на нагрузке форма напряжения представляет собой «обрезки» полуволн синусоиды с крутыми фронтами (рис.1). При этом форма напряжения на самом регуляторе мощности имеет вид, показанный на рис.2. Такая форма сигнала имеет широкий спектр гармоник, которые, распространяясь по электропроводке, могут создавать помехи электронным устройствам: телевизорам, компьютерам, звуковоспроизводящей аппаратуре и т.п. В связи с этим на сетевых входах таких регуляторов мощности устанавливаются RC- или RLC-фильтры.

Рис.1

На практике все выпускаемые сейчас электронные бытовые устройства и компьютеры имеют свои встроенные сетевые фильтры, благодаря которым помехи регуляторов мощности могут не влиять на работу указанных электронных устройств. Автором проверялись различные регуляторы мощности без собственных сетевых фильтров в комнатах, где установлены телевизор, ком-

Рис.2

пьютер, приемник FM и DVD-проигрыватель с УМЗЧ Воздействия помех на эту аппаратуру не наблюдалось, но это не значит, что фильтры вообще не нужны. Эти регуляторы мощности могут создавать помехи электронной аппаратуре соседей по подъезду. Практические исследования распространения помех по электропроводке в соседних комнатах с помощью осциллографа показали, что при регулировании мощности нагрузки до 2 кВт достаточно RC-фильтра, что подтверждается схемами промышленных изделий. Для регуляторов большей мощности необходимо после RC-фильтра подключить LC-фильтр,

сетевые фильтры

Рис.3

Рис.4

Принципиальная схема сетевого фильтра промышленного регулятора мощности до 4 кВт типа РТ-4 УХЛ4.2 220В-1 Р30 показана на рис.3, монтаж регулятора - на рис.4. Каждая катушка содержит 90 витков провода ПЭВ-2 диаметром 1,5 мм, намотанного в два слоя на каркасе, внутри которого размещен ферритовый сердечник с проницаемостью Ф600 диаметром 8 мм. Индуктивность катушки равна 0,25 мГн. Регуляторы мощности без фильтров могут использоваться в гаражах, индивидуальных подсобных помещениях, дачах и т.п., то есть вдали от соседей. Если регулятор мощности является отдельным изделием и предназначен для подключения нагрузок разной мощности, пользователям важно знать, что при одном и том же положении ручки регулятора на разных нагрузках будет разное напряжение. По этой причине перед подключением нагрузки регулятор мощности необходимо устанавливать в нулевое положение. При необходимости контролировать напряжение на нагрузке можно отдельным или встроенным вольтметром.

В Интернете и электротехнических журналах приведено множество различных схем электронных регуляторов мощности нагрузки с практически одинаковыми функциями, но есть и другие схемные решения, например регуляторы, не создающие помех. Эти регуляторы выдают пачки синусоидальных токов, длительностью которых регулируется мощность в нагрузке. Схемы таких регуляторов относительно сложны и могут применяться в каких-то особых случаях. Применение подобных регуляторов в промышленности не встречалось. Подавляющее большинство регуляторов мощности построены по принципу фазового регулирования тока в нагрузке. Основное различие - схемы управления тиристорами и симисторами. Силовая часть представляет собой практически три варианта: тиристор в диагонали диодного моста, два встречно-параллельных тиристора и симистор. Схемы управления представляют собой различные варианты на транзисторах, микросхемах, динисторах, газоразрядных приборах, однопереходных транзисторах и т.п., часть которых приведена в [ 1—6]. Такие схемы содержат много деталей, относительно сложны в изготовлении и наладке.

Регуляторы на тиристорах

Самым простым и широко используемым регулятором мощности был регулятор на тиристоре, включенном в диагональ диодного моста и с простой схемой управления (рис.5). Принцип работы этого регулятора очень простой пока конденсатор С2 заряжается через R2 и R4, тиристор заперт, при достижении на С2 напряжения отпирания тиристор открывается и пропускает ток в нагрузку, а С2 быстро разряжается через низкое

регулятор мощности на тиристоре

Рис.5 регулятор мощности на тиристоре

сопротивление открытого тиристора. При переходе синусоидального напряжения сети через ноль тиристор запирается и ждет нового повышения напряжения на С2 Чем больше времени заряжается С2, тем меньше времени тиристор находится в открытом состоянии и меньше ток в нагрузке. Чем меньше величина R4, тем быстрее заряжается С2 и больше ток пропускается в нагрузку. Достоинством этой схемы является то, что независимо от параметров исправного тиристора положительные и отрицательные импульсы тока в нагрузке всегда симметричны, а также наличие только одного тиристора, которые при их появлении были дефицитом. Недостатком является наличие четырех мощных диодов, что вместе с тиристором и охладителями существенно увеличивает габариты регулятора. Более компактными и в два раза более мощными являются регуляторы мощности на включенных встречно-параллельно тиристорах. На двух тиристорах КУ202Н с простой схемой управления получается регулятор мощности нагрузки до 4 кВт, которая длительно используется автором в калорифере повышенной мощности [7].

Принципиальная схема такого регулятора с сетевым фильтром показана на рис.6. Недостатком таких схем является асимметрия положительных и отрицательных импульсов тока в нагрузке при разбросе параметров тиристоров.

Рис.6

Асимметрия проявляется в начальной стадии открывания тиристоров. Для нагревательных приборов и электроинструмента с коллекторными двигателями эта асимметрия практической роли не играет, а осветительные приборы при уменьшении их яркости начинают мигать, так как импульсы какой-то полярности при этом вообще исчезают. Для устранения этого недостатка необходимо подбирать тиристоры с идентичными параметрами по току открывания и току удержания тиристоров от технологического источника постоянного тока на соответствующей нагрузке или путем подбора второго тиристора по отсутствию мигания лампы при минимальном накале спирали.

Одной из разновидностей тиристоров являются оптотиристоры, для управления которыми при встречнопараллельном включении может быть применен принцип управления схемы рис.5 с разделением положительных и отрицательных управляющих импульсов с помощью диодов или динисторов.

Практическая принципиальная схема такого регулятора мощности нагрузки до 5 кВт показана на рис.7. Этот регулятор используется автором для регулировки сварочного тока и режимов работы других мощных электроустройств. Регулятор мощности снабжен стрелочным индикатором напряжения на нагрузке, что повышает удобство при его эксплуатации. На рис.8 виден стрелочный индикатор (поз.1), на котором приклеены детали его выпрямителя и фильтра. Регулятор не имеет сетевого фильтра, так как применяется либо на даче, либо в гараже. При необходимости в нем можно применить фильтр, схема которого показана на рис.3.

регулятор мощности на оптотиристорах

Рис.7, схема регулятора мощности на оптотиристорах

Рис.8

Регуляторы на симисторах

Особый интерес представляют современные схемы регуляторов мощности на симисторах. Традиционные схемы управления симисторами содержат относительно много деталей, что наглядно видно на монтажной плате промышленного регулятора, показанной на рис.4. Например,    микросхема КР1167КП1Б выдает на управляющий электрод симистора управляющие импульсы, показанные на осциллограмме (рис.9). Принципиальная схема регулятора мощности с применением данной микросхемы, распространенная среди запорожских электриков, показана на рис. 10. Этот регулятор мощности без теплоотвода для VS1 может работать на нагрузку до 200 Вт

Рис.9

(рис. 11), а с радиатором площадью не менее 100 см2 - до 2 кВт. Оказалось, что эту схему без потери качества можно еще упростить. Упрощенная схема регулятора с этой микросхемой показана на рис. 12. При использовании исправных деталей эти схемы не требуют наладки.

Регулятор мощности на симисторах

Рис.10, схема регулятора мощности на симисторах

При изготовлении регуляторов для прикроватных светильников оказалось, что некоторые симисторы и микросхемы имеют дефекты, влияющие на симметричность импульсов и, соответственно, на равномерность регулировки свечения ламп, и даже приводящие к их

Рис.11

миганию. Перепайка деталей на печатной плате является неприятной процедурой и приводит к ее порче. В связи с этим была изготовлена проверочная плата по схеме рис. 10 (без R1 и С1) с панелькой для однорядной микросхемы, которая решила указанные проблемы. К контактам 1 -2 печатной платы подпаивают регу-

Регулятор мощности на симисторе

Рис. 12

лировочный резистор R5. В качестве нагрузки подключают лампу накаливания. Перед установкой деталей для проверки плату в обязательном порядке отключают от электросети.

На базе схемы рис.11 изготовлен портативный технологический регулятор для различных работ. Монтаж деталей показан на фото в начале статьи (нижняя крышка снята). Схема собрана в алюминиевом корпусе, который также служит охладителем симистора, изолированным от корпуса слюдяной прокладкой и изоляционной спецшайбой. После крепления симистора необходимо в обязательном порядке проверить сопротивление изоляции между его анодом и корпусом, которое должно быть не менее 1 МОм Данный регулятор при испытании в течение двух часов нормально работал без нагрева корпуса на нагрузку мощностью 500 Вт.

В заключение следует отметить, что регуляторы мощности нагрузки, собранные по схемам рис.6 и рис. 10, испытанные длительной эксплуатацией, наиболее оптимальны в части надежности, компактности, простоты деталей, монтажа и наладки. С небольшими разбросами параметров тиристоров и асимметричностью параметров симисторов эти регуляторы могут работать на все типы нагрузок соответствующей мощности, кроме осветительных приборов. Отклонение номиналов резисторов и конденсаторов от указанных в схемах на 10...20% на работу регуляторов не влияют. Приведенные схемы управления могут работать и с более мощными тиристорами и симисторами в регуляторах мощности нагрузок до 5 кВт. Регулятор мощности по схеме рис. 12 рекомендуют применять для осветительных приборов мощностью до 100 Вт без теплоотвода. Работа этого регулятора на другие типы нагрузок не испытывалась, но предположительно он не должен быть хуже регулятора, собранного по схеме рис. 10.

А.Н. Журенков

Литература

1. Золотарев С. Регулятор мощности // Радио. -1989. - №11.

2. Карапетьянц В. Усовершенствование регулятора мощности // Радио. - 1986. -№11.

3. Леонтьев А., Лукаш С. Регулятор напряжения с фазоимпульсным управлением // Радио -1992. - №9.

4. Бирюков С. Двухканальный симисторный регулятор // Радио. - 2000. - №2.

5. Зорин С. Регулятор мощности // Радио. -2000. - №8.

6. Журенков А. Фен с электронным регулятором мощности // Электрик. - 2009. - №1-2.

7. Журенков А. Калорифер повышенной мощности // Электрик. - 2009. - №9.